ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ВЕТЕРИНАРНОМУ И ФИТОСАНИТАРНОМУ НАДЗОРУ (РОССЕЛЬХОЗНАДЗОР)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ВСЕРОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ЦЕНТР КАЧЕСТВА И СТАНДАРТИЗАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ ДЛЯ ЖИВОТНЫХ И КОРМОВ» (ФГБУ «ВГНКИ»)

УТВЕРЖДАЮ

Заместитель директора, руководитель испытательного центра ФГБУ «ВГНКИ»

М.А. Гергель

17 » авистя 2020 г.

Методические указания по определению остаточного содержания дапсона и тиамфеникола в продукции животноводства методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием

MY A-1/075

1 РАЗРАБОТЧИК

Федеральное государственное бюджетное учреждение «Всероссийский государственный Центр качества и стандартизации лекарственных средств для животных и кормов», 123022, г. Москва, Звенигородское ш.,5, Телефон/факс: (499) 253-14-68/ (499) 256-22-50; E-mail: kanc@vgnki.ru

Отдел безопасности пищевых продуктов (А.В. Третьяков, А.В. Сорокин, И. В. Батов, С.В. Белов, Е.А. Мамедова, О.Е. Латышев, А.Е. Жедулов, Е.А. Небера, Т.С. Грачева, Т.М. Сухова, С.А. Грачев, Д.Ю. Некрасов, А.Ю. Ефимов, Н.С. Бардюгов).

2 СВЕДЕНИЯ ОБ АТТЕСТАЦИИ

Методические указания аттестованы ФГБУ «ВГНКИ».

Свидетельство об аттестации № 310354-0065/2020 от 17.12.2020г

3 СВЕДЕНИЯ О РЕГИСТРАЦИИ

Регистрационный номер методики измерений в Федеральном информационном фонде измерений ФР.1.31.2021.39537

Содержание

1 Назначение и область применения	4
2 Нормативные ссылки	4
3 Требования к показателям точности измерения	6
4 Требования к средствам измерений, вспомогательному оборудованию, материалам, реактивам	7
5 Метод измерений	9
6 Требования безопасности, охраны окружающей среды	9
7 Требования к квалификации операторов	9
8 Требования к условиям измерений	9
9 Отбор и хранение проб	10
10 Подготовка к выполнению измерений	10
11 Порядок выполнения измерений	16
12 Обработка результатов измерений	16
13 Оформление результатов измерений	17
14 Контроль качества результатов измерений при реализации методики в лаборатории	18
Приложение А	19

1 Назначение и область применения

Настоящий документ устанавливает методику измерений массовой доли дапсона и тиамфеникола методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием и предназначен для организаций и учреждений, независимо от их организационно-правовой формы, осуществляющих контроль продукции животноводства, а также мониторинг продукции животноводства по остаточному содержанию лекарственных средств.

Методика измерений входит в состав Методических указаний по определению остаточного содержания дапсона и тиамфеникола методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием.

Диапазон измерений массовой доли дапсона и тиамфеникола представлен в Таблице 1.

Таблица 1 — Диапазоны измерений массовой доли дапсона и тиамфеникола в различных матрицах

Соединение	Диапазон измерения в образцах мяса и мясных продуктов, мкг/кг	Диапазон измерения в образцах субпродуктов, яиц и яичных продуктов, жире, мкг/кг	Диапазон измерения в образцах молока и молока и молочных продуктов, мкг/кг	Диапазон измерения в образцах меда, мкг/кг
Дапсон	от 1 до 1000	от 1 до 1000	от 1 до 1000	от 1 до 1000
Тиамфеникол	от 1 до 1000	от 1 до 1000	от 1 до 1000	от 1 до 1000

2 Нормативные ссылки

В настоящей методике измерений использованы ссылки на следующие документы в области стандартизации:

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р ИСО 21748-2012. Статистические методы. Руководство по использованию оценок повторяемости, воспроизводимости и правильности при оценке неопределенности измерений

ГОСТ 12.1.019–2017 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ Р 53228 -2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования.

OIML R 76-1-2011 Государственная система обеспечения единства измерений (ГСИ). Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 12.0.004-2015 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарногигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ГОСТ 12.2.085-2017 Арматура трубопроводная. Клапаны предохранительные. Выбор и расчет пропускной способности

ГОСТ 12.4.021-75 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 1770-74 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4288-76 Изделия кулинарные и полуфабрикаты из рубленого мяса. Правила приемки и методы испытаний

ГОСТ 4814-57 Блоки мясные замороженные. Технические условия

ГОСТ 5848-73 Реактивы. Кислота муравьиная. Технические условия

ГОСТ 6995-77 Реактивы. Метанол-яд. Технические условия

ГОСТ 7269- 2015 Мясо. Методы отбора образцов и органолептические методы определения свежести

ГОСТ 9792-73 Колбасные изделия и продукты из свинины, баранины, говядины и мяса других видов убойных животных и птиц. Правила приемки и методы отбора проб

ГОСТ 27752-88 Часы электронно-механические кварцевые настольные, настенные и часы-будильники. Общие технические условия

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

ГОСТ 31720-2012 Пищевые продукты переработки яиц сельскохозяйственной птицы. Методы отбора проб и органолептического анализа

ГОСТ 32951-2014 Полуфабрикаты мясные и мясосодержащие. Общие технические условия

ГОСТ 19792-2017 Мед натуральный. Технические условия

ГОСТ 34037-2016 Упаковка стеклянная для химических реактивов и особо чистых химических веществ. Общие технические условия

ГОСТ Р 51447-99 Мясо и мясные продукты. Методы отбора проб

ГОСТ Р 57901-2017 Яйца куриные пищевые повышенного качества. Технические условия

ТУ 6-09-06-1092-83 Ацетонитрил ОСЧ (особо чистый)

ФС.2.2.0020.18 Вода очищенная

ГОСТ 29245-91 Консервы молочные. Методы определения физических и органолептических показателей

Примечание — При пользовании настоящим документом на методику измерений целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного

информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим документом на методику измерений следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Требования к показателям точности¹ измерения

Настоящие методические указания имеют показатели точности и обеспечивают получение результатов измерений массовой доли дапсона и тиамфеникола с погрешностью, не превышающей значений, приведенных в таблице 2.

Таблица 2 – Показатели точности методики (значения относительной расширенной неопределенности результатов измерений, относительное среднеквадратическое отклонение повторяемости).

Объект	Диапазон измерений массовой доли, мкг/кг	Значение относительной расширенной неопределенности * , \pm U , % при коэффициенте охвата $k=2$	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), σ_r , %	Показатель воспро- изводимости (отно- сительное стандарт- ное отклонение вос- производимости), σ_R , %	Предел повторяемости, г, % (при Р = 0,95, п = 2)
	Дапсон				
Мясо, мясные	От 1,0 до 100 вкл.	30	5	13	14
продукты	Св. 100 до 1000 вкл.	15	4	7	11
Субпродукты,	От 1,0 до 100 вкл.	30	8	14	22
яйца и яичные продукты, жир	Св. 100 до 1000 вкл.	14	4	9	11
Молоко и мо-	От 1,0 до 10 вкл.	29	4	13	11
лочные про- дукты	Св. 10 до 1000 вкл.	14	4	6	11
Мед	От 1,0 до 10 вкл.	32	5	15	14
-	Св. 10 до 1000 вкл.	20	3	9	8
	·		Тиамфеникол		
Мясо, мясные	От 1,0 до 100 вкл.	30	9	13	25
продукты	Св. 100 до 1000 вкл.	17	7	9	19
	От 1,0 до 100 вкл.	32	9	14	25

¹ В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности использованы показатели неопределенности измерений

Субпродукты, яйца и яичные продукты, жир	Св. 100 до 1000 вкл.	17	6	8	17
Молоко и мо-	От 1,0 до 100 вкл.	33	8	15	22
лочные про- дукты	Св. 100 до 1000 вкл.	18	5	8	14
	От 1,0 до 10 вкл.	30	5	14	14
Мед	Св. 10 до 1000 вкл.	18	4	8	11
* - соответствует характеристики погрешности при доверительной вероятности Р=0,95					

Значения показателя точности (расширенной неопределенности) методики используют при:

- оформлении результатов измерений, выдаваемых лабораторией;
- оценке деятельности лабораторий на качество проведения измерений;
- оценке возможности использования результатов измерений при реализации методики измерений в лаборатории

4 Требования к средствам измерений, вспомогательному оборудованию, материалам, реактивам

При выполнении измерений применяют следующие средства измерений, вспомогательное оборудование, материалы и реактивы.

4.1 Средства измерений, вспомогательное оборудование

- 4.1.1 Масс-спектрометр с гибридным квадрупольным анализатором с диапазоном измерений m/z от 5 до 1200 «6500 QTRAP» (AB SCIEX, Канада, США) и компьютером с установленным программным обеспечением Analyst 1.6.1 (AB SCIEX, Канада, США), номер в Государственном реестре средств измерений № 58075-14.
- 4.1.2 Система высокоэффективной жидкостной хроматографии, состоящая из бинарного насоса со смесителем, термостата хроматографической колонки, обеспечивающего температуру нагрева до $(50\pm1,0)$ °C.
- 4.1.3 Колонка хроматографическая обращенно-фазная длиной не более 150 мм, с диаметром частиц сорбента не более 5,0 мкм.
 - 4.1.4 Компьютер с установленным программным обеспечением.
 - 4.1.5 Часы электронно-механические по ГОСТ 27752.
- 4.1.6 Весы Discovery DV214C (Ohaus, Швейцария), номер в Государственном реестре средств измерений 33646-06.
- 4.1.7 Весы электронные ЕК-300і (А&D Company, Япония), номер в Государственном реестре средств измерений 25313-06.
 - 4.1.8 Колбы 2-10-1 и цилиндры 1-1000-1 мерные по ГОСТ 1770.
- 4.1.9 Дозаторы механические автоматические переменной вместимости (2-20) мм³, (10-100) мм³, (100-1000) мм³, (500-5000) мм³ по ГОСТ 28311.
 - 4.1.10 Бутыль стеклянная БВ-1000 по ГОСТ 34037.

- 4.1.11 Пробирки полипропиленовые вместимостью 15 см³ с завинчивающимися крышками.
- 4.1.12 Виалы (флаконы) стеклянные вместимостью 2 см³ с завинчивающимися крышками и тефлоновыми прокладками 9 мм.
- 4.1.13 Картриджи для твердофазной экстракции вместимостью не менее 3 см³, заполненные сорбентом на основе сополимера дивинилбензола и винилпирролидона, с частицами диаметром не более 50 мкм, массой 60 мг.
- 4.1.14 Модуль термостатируемый нагревательный с системой отдувки растворителей инертным газом и максимальной температурой термостатирования не менее 40 °C.
- 4.1.15 Центрифуга лабораторная рефрижераторная со скоростью вращения не менее 4000 об/мин и диапазоном задаваемых температур от 4 °C до 20 °C, с адаптерами для пробирок вместимостью 15 см³.
- 4.1.16 Баня ультразвуковая с рабочей частотой не менее 20 Γ ц и объемом не менее 1 дм^3 .
- 4.1.17 Микроцентрифуга лабораторная рефрижераторная со скоростью вращения не менее 15000 об/мин и диапазоном задаваемых температур от 4 °C до 20 °C, с адаптерами для микроцентрифужных пробирок вместимостью 1,5 см³.
- 4.1.18 Встряхиватель (шейкер) вибрационный для пробирок орбитального типа движения с амплитудой встряхивания не менее 3 мм и диапазоном скоростей от 150 до 2500 об/мин.
 - 4.1.19 Система получения деионизированной воды высокой чистоты.
- 4.1.20 Холодильник бытовой с цифровым контроллером температуры и рабочим диапазоном температур от 0 °C до 5 °C.
- 4.1.21 Камера лабораторная морозильная с цифровым контроллером температуры и рабочим диапазоном температур от минус 15 °C до минус 25 °C.
 - 4.1.22 Фильтры нейлоновые мембранные с размером диаметра пор не более 0,2 мкм.
 - 4.1.23 Микроцентрифужные пробирки объемом 1,5 см³.
 - 4.1.24 Ваккумное устройство для твердофазной экстракции.
 - 4.1.25 Гомогенизатор лабораторный.

4.2 Реактивы, материалы

- 4.2.1 метанол по ГОСТ 6995, квалификация "х.ч.",
- 4.2.2 ацетонитрил по ТУ 6-09-06-1092-83, квалификация "х.ч.",
- 4.2.3 дапсон, доля основного вещества 90%,
- 4.2.4 тиамфеникол, доля основного вещества 90%,
- 4.2.5 сульфаметазин-13С6, доля основного вещества 90%,
- 4.2.6 хлорамфеникол-Д5, доля основного вещества 90%.

Примечание – допускается применение других средств измерений, вспомогательного оборудования, материалов и реактивов с метрологическими и техническими характеристиками не хуже приведенных выше.

5 Метод измерений

Измерения содержания лекарственных средств выполняют методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием. Детектирование анализируемых веществ проводят в режиме мониторинга выбранных реакций (MRM).

Используя полученные с применением метода внутреннего стандарта градуировочные характеристики, по площади пиков идентифицированных соединений находят их количественное содержание.

6 Требования безопасности, охраны окружающей среды

Используемые в работе реактивы содержат вещества, относящиеся к 1 и 2 классам опасности, при работе с ними необходимо соблюдать требования безопасности, установленные для работ с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005.

Помещения, в которых проводят измерения и подготовку проб, должны быть оборудованы приточно-вытяжной вентиляцией.

Операции по приготовлению и использованию градуировочных растворов аналитов и их изотопно-меченых аналогов следует проводить в вытяжном шкафу.

В связи с тем, что при работе на масс-спектрометре используются сжатые газы, следует соблюдать правила устройства и безопасной эксплуатации сосудов, работающих под давлением по ГОСТ 12.2.085.

При выполнении измерений на масс-спектрометре следует соблюдать правила электробезопасности в соответствии с ГОСТ 12.2.007.0 и инструкцией по эксплуатации прибора.

7 Требования к квалификации операторов

К операциям по подготовке проб и проведению измерений методом ВЭЖХ с масс-спектрометрическим детектированием допускают лиц, прошедших соответствующее обучение и освоивших настоящую методику измерений.

8 Требования к условиям измерений

При выполнении измерений соблюдают следующие условия:

температура воздуха, $^{\circ}$ С (20 ± 5), атмосферное давление, мм рт.ст. (630 – 800), относительная влажность воздуха, $^{\circ}$ (40 – 80).

Хроматографические измерения проводят в условиях, приводимых в инструкции по эксплуатации прибора.

9 Отбор и хранение проб

Отбор и хранение проб проводят, руководствуясь следующими нормативными документами: ГОСТ 4288, ГОСТ 4814, ГОСТ 7269, ГОСТ 9792, ГОСТ 31720, ГОСТ 32951, ГОСТ 19792, ГОСТ Р 51447, ГОСТ 26809.1, ГОСТ Р 57901.

10 Подготовка к выполнению измерений

При подготовке к выполнению измерений проводят следующие работы.

10.1 Приготовление растворов

10.1.1 Приготовление подвижной фазы А

В стеклянную бутыль вместимостью 1000 см^3 мерным цилиндром (4.1.8) отмеряют 1000 см^3 деионизированной воды, дегазируют на ультразвуковой бане (4.1.16) в течение 5 мин.

Раствор годен к использованию в течение 1 месяца.

10.1.2 Приготовление подвижной фазы Б

В стеклянную бутыль вместимостью 1000 см^3 мерным цилиндром (4.1.8) отмеривают 1000 см^3 метанола (4.2.1), дегазируют на ультразвуковой бане (4.1.16) в течение 5 мин.

Раствор годен к использованию в течение 1 месяца.

10.1.3 Приготовление рабочих растворов

10.1.3.1 Приготовление исходного раствора стандартных образцов дапсона и тиамфеникола (C_o) с массовой концентрацией 1000 мкг/см³

На весах (4.1.6) взвешивают 4,0-6,0 мг стандартных образцов и переносят в отдельную полипропиленовую пробирку вместимостью 15 см^3 . В пробирку весовым методом добавляют метанол, масса которого рассчитывается по формуле (1):

$$m_p = \frac{m \cdot Ma \cdot Pa \cdot \rho}{Mc \cdot 100 \cdot C}, \tag{1}$$

где тр-масса метанола, г;

т-масса стандартного образца, г;

Ма— молярная масса чистого вещества, г/моль;

Мс-молярная масса соли стандартного образца, г/моль;

Ра – степень чистоты стандартного образца, %;

p – плотность метанола, г/см³;

C – концентрация раствора C_0 , г/см³.

Плотность метанола (р) указывают в зависимости от температуры воздуха в помещении в соответствии с таблицей 3.

Таблица 3- Зависимость плотности метанола от температуры воздуха в помещении.

Температура воздуха, оС	Плотность метанола (ρ), г/см ³
15,0	0,7961
15,5	0,7956
16,0	0,7952
16,5	0,7947
17,0	0,7942
17,5	0,7938
18,0	0,7933
18,5	0,7928
19,0	0,7924
19,5	0,7919
20,0	0,7914
20,5	0,7909
21,0	0,7905
21,5	0,7900
22,0	0,7895
22,5	0,7891
23,0	0,7886
23,5	0,7881
24,0	0,7877
24,5	0,7872
25,0	0,7867
25,5	0,7862
26,0	0,7858
26,5	0,7853
27,0	0,7848
27,5	0,7844
28,0	0,7839
28,5	0,7834
29,0	0,7829
29,5	0,7825
30,0	0,7820

Приготовленные растворы хранят в морозильной камере при температуре минус 20°C в течение 1 года.

 $10.1.3.2~ Приготовление раствора~(C_1)~ с~ массовой концентрацией аналитов в растворе <math>10~ {\rm MKZ/cm^3}$

Дозатором переменного объема отбирают $0,1\,\,\mathrm{cm}^3$ из каждого раствора C_0 в мерную пробирку вместимостью $10\,\,\mathrm{cm}^3$, доводят до метки метанолом и перемешивают.

Приготовленные растворы хранят в морозильной камере при температуре минус 20°C в течение 6 месяцев.

10.1.3.3 Приготовление раствора (C_2) с массовой концентрацией аналитов в растворе 1 мкг/см³

Дозатором переменного объема отбирают 1,0 см³ раствора C_1 в мерную пробирку вместимостью 10 см³, доводят до метки метанолом и перемешивают.

Приготовленный раствор хранят при температуре минус 20 °C в течение 3 месяцев.

10.1.3.4 Приготовление раствора (C_3) с массовой концентрацией аналитов в растворе 0.1 мкг/см³

Дозатором переменного объема отбирают 1,0 см³ раствора C_2 в мерную пробирку вместимостью 10 см³, доводят до метки метанолом и перемешивают.

Приготовленный раствор хранят при температуре минус 20 °C в течение 1 недели.

10.1.3.5 Приготовление исходных растворов (D_o) внутренних стандартов с массовой концентрацией сульфаметазина-13С6 и хлорамфеникола-Д5 в растворах 1000 мкг/см^3

На весах (4.1.6) взвешивают 4,0-6,0 мг внутренних стандартов аналитов и переносят в отдельные полипропиленовые пробирки вместимостью 15 см^3 . В пробирки весовым методом добавляют растворитель - метанол, масса которого рассчитывается по формуле (1).

Приготовленный раствор хранят в морозильной камере при температуре минус 20 °C в течение 1 года.

10.1.3.6 Приготовление раствора внутренних стандартов (D_i) с массовой концентрацией аналитов в растворе 10 мкг/см³

Дозатором переменного объема отбирают по $0,1\,\,\mathrm{cm}^3$ растворов D_0 в мерную пробирку вместимостью $10\,\,\mathrm{cm}^3$, доводят до метки метанолом и перемешивают.

Приготовленный раствор хранят при температуре минус 20 °C в течение 6 месяцев.

10.1.3.7 Приготовление раствора внутренних стандартов (D_2) с массовой концентрацией аналитов в растворе 1 мкг/см 3

Дозатором переменного объема отбирают 1,0 см 3 раствора D_1 в мерную пробирку вместимостью 10 см 3 , доводят до метки метанолом и перемешивают.

Приготовленный раствор хранят при температуре минус 20 °C в течение 3 месяцев.

10.1.4 Приготовление градуировочных растворов G_1-G_5

10.1.4.1 Приготовление образцов мышечной ткани, субпродуктов, жира, яиц, молока и меда с концентрацией аналитов 1000 нг/мл (G5)

В пластиковый флакон вместимостью 15 см³ помещают 1,0 г образца, не содержащего искомых аналитов (бланк). С помощью пипеточного дозатора к образцу добавляют 0,05 см³ раствора D_2 (10.1.3.7) и 0,1 см³ раствора C_1 (10.1.3.2), встряхивают на шейкере-вортексе 1 минуту. Далее проводят пробоподготовку согласно п. 10.4.1.

Приготовленный образец хранят в холодильнике при температуре 4 °C 1 день.

10.1.4.2 Приготовление образцов мышечной ткани, субпродуктов, жира, яиц, молока и меда с концентрацией аналитов 100 нг/мл (G4)

В пластиковый флакон вместимостью 15 см³ помещают 1,0 г образца, не содержащего искомых аналитов (бланк). С помощью пипеточного дозатора к образцу добавляют 0,05 см³ раствора D_2 (10.1.3.7) и 0,1 см³ раствора C_2 (10.1.3.3), встряхивают на шейкере-вортексе 1 минуту. Далее проводят пробоподготовку согласно п. 10.4.1.

Приготовленный образец хранят в холодильнике при температуре 4 °C 1 день.

10.1.4.3 Приготовление образцов мышечной ткани, субпродуктов, жира, яиц, молока и меда с концентрацией аналитов 10 нг/мл (G3)

В пластиковый флакон вместимостью 15 см³ помещают 1,0 г образца, не содержащего искомых аналитов (бланк). С помощью пипеточного дозатора к образцу добавляют 0,05 см³ раствора D_2 (10.1.3.7) и 0,1 см³ раствора C_3 (10.1.3.4), встряхивают на шейкере-вортексе 1 минуту. Далее проводят пробоподготовку согласно п. 9.4.1.

Приготовленный образец хранят в холодильнике при температуре 4 °C 1 день.

10.1.4.4 Приготовление образцов мышечной ткани, субпродуктов, молока, жира, яиц, и меда с концентрацией аналитов 5 нг/мл (G2)

В пластиковый флакон вместимостью 15 см³ помещают 1,0 г образца, не содержащего искомых аналитов (бланк). С помощью пипеточного дозатора к образцу добавляют 0,05 см³ раствора D_2 (10.1.3.7) и 0,05 см³ раствора C_3 (10.1.3.4), встряхивают на шейкере-вортексе 1 минуту. Далее проводят пробоподготовку согласно п. 10.4.1.

Приготовленный образец хранят в холодильнике при температуре 4 °C 1 день.

10.1.4.5 Приготовление образиов мышечной ткани, субпродуктов, молока, жира, яиц и меда с концентрацией аналитов 1 нг/мл (G1)

В пластиковый флакон вместимостью 15 см³ помещают 1,0 г образца, не содержащего искомых аналитов (бланк). С помощью пипеточного дозатора к образцу

добавляют 0.05 см^3 раствора D_2 (10.1.3.7) и 0.01 см^3 раствора C_3 (10.1.3.4), встряхивают на шейкере-вортексе 1 минуту. Далее проводят пробоподготовку согласно п. 10.4.1.

Приготовленный образец хранят в холодильнике при температуре 4 °C 1 день.

10.2 Подготовка прибора к измерениям

Подготовку хроматографической системы и масс-спектрометрического детектора к работе осуществляют в соответствии с техническими руководствами по эксплуатации приборов.

10.2.1 Параметры настройки жидкостного хроматографа

температура колонки 40 °С;

скорость потока подвижной фазы 0,3 см³/мин;

Разделение проводят в режиме градиентного элюирования: в начальный момент и до 2,0 мин элюирование в 100%-ной мобильной фазе A, с 2,0 по 4,0 мин градиентное элюирование к 100%-ной мобильной фазе Б, с 4,0 по 18,0 мин элюирование в 100%-ной мобильной фазе Б, с 18,0 по 18,10 мин переход к элюированию в 100%-ной мобильной фазе A, с 18,10 по 28,0 мин уравновешивание колонки в 100%-ной мобильной фазе A.

10.2.2 Параметры настройки масс-спектрометрического детектора

Таблица 4 – Параметры в режиме MRM в условиях электрораспыления

№	Определяемое вещество	Ион-предше- ственник, m/z	Дочерние ионы, m/z	Потенциал декластери- зации, В	Энергия столкновений, эВ / Потенциал на выходе из ячейки, В
1 Дапсон	Пансон	249,1	108	50	19/13
	249,1	156	50	19/13	
2 Тиамфеникол	Tuescherwicz	354	184,9	-100	-24/-8
	Тиамфеникол	334	290,2	-100	-17/-8
3	Сульфаметазин-13С6	285,1	186,1	50	25/15
4	Хлорамфеникол-Д5	326	157	-60	-25/-14

Напряжение на зонде (IS):

5500 В для положительного режима регистрации ионов;

4500 В для отрицательного режима регистрации ионов;

Разрешение квадруполей Q1/Q3: единичное;

Поток газа для фрагментации (CAD): 6.

10.3 Установление градуировочной характеристики

Градуировочную характеристику строят заново перед каждой новой серией измерений. Для нахождения градуировочной характеристики используют не менее четырех градуировочных растворов.

Процедура приготовления градуировочных растворов описана в разделе 10.1.4. Для приготовления проводят обработку "чистых" проб (бланков) согласно разделу 10.4, не содержащих действующих веществ, к которым перед обработкой добавляют раствор внутренних стандартов и рабочий раствор аналитов в количестве, необходимом для получения массовых концентраций в соответствующих пределах (10.1.4).

Градуировочную зависимость строят с помощью программы «Analyst» в координатах «отношение площади пика определяемого вещества к площади пика внутреннего стандарта этого вещества» — «концентрация определяемого вещества в градуировочном растворе к площади пика внутреннего стандарта этого вещества», при этом в программе указывают концентрации стандартов и внутреннего стандарта согласно Таблице 5.

Таблица 5 – концентрации стандарта и внутреннего стандарта для занесения в

программу обсчета

Градуировоч- ный раствор	Концентрация внутреннего стандарта в градуировочном растворе (нг/мл)	Концентрация стандарта в гра- дуировочном растворе (нг/мл)
G1	50	1
G2	50	5
G3	50	10
G4	50	100
G5	50	1000

При построении градуировочной зависимости используют линейную регрессию, при этом коэффициент корреляции должен быть не менее 0,98.

Для нахождения градуировочной характеристики анализируют градуировочные растворы. Подвижную фазу, реагенты и матрицу предварительно проверяют на наличие исследуемых аналитов или других соединений, мешающих определению.

10.4 Подготовка проб

10.4.1 Подготовка проб мяса, мясных продуктов, субпродуктов, жира

Мышечную ткань предварительно очищают от грубой соединительной ткани. 100 г пробы измельчают на гомогенизаторе (4.1.25) и взвешивают в полипропиленовой пробирке (4.1.11) 1,0 г образца на весах (4.1.7). Пипеточным дозатором в пробирку вносят $0,05\ \text{см}^3$ раствора внутренних стандартов $D_2(10.1.3.7)$, помещают пробирку в шейкер на 10 минут для перемешивания. Осторожно приливают 4 см³ ацетонитрила (4.2.2) и помещают пробирку на 15 мин в шейкер (4.1.18) для экстракции. Затем центрифугируют при 4000 об/мин в течение 15 мин при температуре 4 °C. Переливают органический слой в новую полипропиленовую пробирку, помещают ее на нагревательный модуль (4.1.14) и упаривают в токе азота при температуре 40 °C до 0,1-0,2 см³. К остатку приливают 2 см³ деионизированной воды, перемешивают в шейкере 5 с и центрифугируют при 4000 об/мин в течение 15 мин при температуре 4 °С. Полученный экстракт очищают методом твердофазной экстракции (ТФЭ). Перед нанесением экстракта на картридж (4.1.13) последовательно кондиционируют сорбент 2 см³ ацетонитрила и 2 см³ деионизированной воды. Затем пропускают через картридж полученный экстракт (при процедуре очищения вакуум или избыточное давление не применяют). Промывают картридж 2 см³ деионизированной воды, сушат в вакууме водоструйного насоса в течение 10 мин и элюируют аналиты 2 см³ ацетонитрила в новую полипропиленовую пробирку. Элюат помещают на нагревательный модуль и упаривают в токе азота при температуре 40 °C до 0,1 - 0,2 см³. К полученному остатку приливают 0,5 см³ раствора мобильной фазы A (10.1.1), тщательно перемешивают, помещают в ультразвуковую баню на 1 минуту и переливают экстракт в центрифужную полипропиленовую пробирку вместимостью 1,5 см³, доводят объем фазой A до 1 см³ и центрифугируют при 15000 об/мин в течение 10 мин при температуре 4 °C. Пипеточным дозатором переносят центрифугат в виалу для автосамплера жидкостного хроматографа. Полученный раствор используют для ВЭЖХ-МС/МС анализа.

10.4.2 Подготовка проб яичного порошка

Отобранную пробу яичного порошка перед анализом тщательно перемешивают и взвешивают 1,0 г в полипропиленовой пробирке. Пипеточным дозатором в пробирку вносят 0,05 см³ раствора внутренних стандартов D_2 (10.1.3). Далее обработку пробы и подготовку к хроматографированию проводят по 10.4.1.

10.4.3 Обработка проб яиц и меланжа

Яйца отделяют от скорлупы и перемешивают на гомогенизаторе, меланж тщательно перемешивают. Взвешивают 1,0 г гомогенизированной пробы в полипропиленовой пробирке. Пипеточным дозатором в пробирку вносят 0,05 см³ раствора внутренних стандартов $D_2(10.1.3)$. Далее обработку пробы и подготовку к хроматографированию проводят по 10.4.1.

10.4.4 Подготовка проб меда

Отобранную пробу меда тщательно перемешивают. Взвешивают 1,0 г пробы в полипропиленовой пробирке, добавляют 4 см³ деионизированной воды, помещают пробирку в шейкер на 15 минут. Пипеточным дозатором в пробирку вносят 0,05 см³ раствора внутренних стандартов D_2 (10.1.3) и перемешивают. Полученный экстракт наносят на картриджи и очищают методом $T\Phi \ni$ по 10.4.1.

10.4.5 Подготовка проб молока, молочных продуктов

Отобранную пробу молока или молочных продуктов (сухие молочные продукты восстанавливают по ГОСТ 29245) перед анализом тщательно перемешивают и взвешивают 1,0 г в полипропиленовой пробирке. Дозатором переменного объема в пробирку вносят 0,05 см³ раствора внутренних стандартов D_2 (10.1.3.7). Далее обработку пробы и подготовку к хроматографированию проводят по 10.4.1.

11 Порядок выполнения измерений

При выполнении измерений в инжектор хроматографа вводят анализируемый раствор, полученный в п. 10.4. Подвижную фазу и реагенты предварительно проверяют на наличие тиамфеникола и дапсона или других соединений, мешающих определению. С помощью установленных градуировочных характеристик проводят количественное определение аналита в анализируемом растворе.

12 Обработка результатов измерений

Результаты измерений обрабатываются с помощью программы Analyst и выдаются

в виде массовой доли анализируемого вещества. При этом в программе, при обсчете, концентрация внутреннего стандарта в образцах и в калибровочных растворах принимается равной 50 нг/см³.

12.1 За результат измерений принимают среднее арифметическое значение результатов двух параллельных определений, если выполняется условие приемлемости (2):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r,\tag{2}$$

- где X_1 , X_2 результаты параллельных определений массовой доли вещества, мкг/кг, r значение предела повторяемости, % (таблица 2).
- 12.2 Если условие (2) не выполняется, получают еще два результата в полном соответствии с данной методикой измерений. За результат измерений принимают среднее арифметическое значение результатов четырех определений, если выполняется условие

$$\frac{4 \cdot \left| X_{\text{max}} - X_{\text{min}} \right| \cdot 100}{(X_1 + X_2 + X_3 + X_4)} \le CR_{0.95},\tag{3}$$

где X_{max} , X_{min} — максимальное и минимальное значения из полученных четырех результатов параллельных определений массовой доли аналита, мкг/кг; $CR_{0,95}$ — значение критического диапазона для уровня вероятности P=0,95 и n — результатов определений.

$$CR_{0,95} = f(n) \cdot \sigma_r$$

для n = 4

$$CR_{0.95} = 3.6 \cdot \sigma_r, \tag{4}$$

где σ_r – показатель повторяемости, % (таблица 2).

- 12.3 Если условие (3) не выполняется, выясняют причины превышения критического диапазона, устраняют их и повторяют выполнение измерений в соответствии с требованиями методики измерений.
- 12.4 Если результат превышает верхний предел измерения, то выдают результат в следующей формулировке: «Содержание аналита превышает верхний предел диапазона измерения методики».

13 Оформление результатов измерений

Результат анализа в документах, предусматривающих его использование, представляют в виде

 $\overline{X}_{k,c} \pm 0,01 \cdot U_{k,c} \cdot \overline{X}_{k,c}$, при Р=0,95,

где $\overline{\chi}_{k,c}$ – среднее арифметическое значение результатов п определений массовой доли аналита, признанных приемлемыми по 12.1, 12.2, мкг/кг;

 $U_{k,c}$ – значение относительной расширенной неопределенности, % (таблица 2);

14 Контроль качества результатов измерений при реализации методики в лаборатории

Контроль качества результатов измерений при реализации методики в лаборатории рекомендуется осуществлять по ГОСТ Р ИСО 5725-6, используя контроль стабильности среднеквадратического (стандартного) отклонения повторяемости по 6.2.2 ГОСТ Р ИСО 5725-6 и показателя правильности по 6.2.4 ГОСТ Р ИСО 5725-6. Проверка стабильности может быть осуществлена с применением контрольных карт Шухарта.

Периодичность контроля стабильности результатов выполняемых измерений регламентируют в Руководстве по качеству лаборатории.

Рекомендуется устанавливать контролируемый период так, чтобы количество результатов контрольных измерений было от 20 до 30.

При неудовлетворительных результатах контроля, например, при превышении предела действия или регулярном превышении предела предупреждения, выясняют причины этих отклонений, в том числе проводят смену реактивов, проверяют работу оператора.

Приложение А

(информационное)

Библиография

- [1] Р 50.2.003-2000 ГСИ «Внутренний оперативный контроль качества. Пакет программ Qcontrol».
- [2] РМГ 76-2014 Государственная система обеспечения единства измерений. Внутренний контроль качества результатов количественного химического анализа.